Ученые рассказали, как устроены атомные электростанции

Разберемся в сложном хитросплетении технологического оборудования атомной электростанции.

Человек ищет энергию везде: в пламени горящих дров и угля, в напоре речного потока, силе ветра и тепле солнечных лучей. В середине прошлого века мы научились использовать энергию, спрятанную в атомных ядрах тяжелых элементов, передает интернет-издание Хроника.инфо со ссылкой на naked-science.ru.

Сегодня на атомных электростанциях эта невидимая глазу энергия атома превращается в такое привычное нам электричество.

Без мирного атома никак

Мировая экономика немыслима без атомной энергетики. На атомных электростанциях вырабатывается одна десятая всей производимой на планете электроэнергии. Сегодня 192 атомные электростанции работают в 31 стране мира. Как правило, все они имеют по несколько энергоблоков – технологических комплексов оборудования для производства электроэнергии, имеющих в своем составе ядерный реактор. Общее количество таких энергоблоков в мире составляет 451.

На первом месте по количеству АЭС находятся США – 62, на втором Франция – 19, третье место у Японии – 17. Россия занимает пятое место по количеству атомных электростанций. Их у нас 10 с 37 энергоблоками. Общая мощность всех АЭС мира составляет около 392 тыс. МВт.

Атомная энергетика имеет много плюсов. Ключевые – высокая рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, как это происходит на тепловых электростанциях. Однако есть и серьезные минусы. В случае аварии на атомной электростанции продукты деления ядерного топлива, вырвавшиеся из реактора, могут надолго сделать непригодными для жизни большие территории, прилегающие к станции. Еще один минус – это проблема хранения и переработки отработанного ядерного топлива.

Принцип работы атомной электростанции

Использование атомной энергии началось практически одновременно с созданием ядерного оружия. Пока шли военные разработки, начались исследования возможности применения атомной энергии и в мирных целях, прежде всего для производства электроэнергии. Началом мирного использования ядерной энергии принято считать 1954 г., когда в подмосковном Обнинске заработала первая в мире атомная электростанция.

В отличие от ядерной бомбы, при взрыве которой происходит неуправляемая цепная реакция деления атомных ядер с одномоментным высвобождением колоссального количества энергии, в ядерном реакторе происходит регулируемая ядерная реакция деления – топливо медленно отдает нам свою энергию. Тем самым для того, чтобы использовать цепную реакцию деления атома в мирных целях, ученым пришлось придумать, как ее приручить.

Атомная электростанция – это целый комплекс технических сооружений, предназначенных для выработки электрической энергии. Ядерная реакция происходит в самом сердце атомной электростанции – ядерном реакторе. Но само электричество вырабатывает совсем не он.

На АЭС происходит три взаимных преобразования форм энергии: ядерная энергия переходит в тепловую, тепловая – в механическую, а уже механическая энергия преобразуется в электрическую. И для каждого преобразования предусмотрен свой технологический «остров» – комплекс оборудования, где происходят эти превращения. Пройдемся вдоль технологической цепочки и подробно посмотрим, как рождается электричество.

Ядерный реактор

Реактор атомной электростанции представляет собой конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Ядерный реактор можно сравнить с мощным железобетонным бункером. Он имеет стальной корпус и помещен в железобетонную герметичную оболочку.

Пространство, в котором непосредственно происходит реакция деления ядер, называется «активной зоной ядерного реактора». В ее процессе выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель. В большинстве случаев теплоносителем выступает обычная вода. Правда, предварительно ее очищают от различных примесей и газов. Она подается снизу в активную зону реактора с помощью главных циркуляционных насосов. Именно теплоноситель передает тепло за пределы реактора. Он обращается в замкнутой системе труб – контуре. Первый контур нужен для того, чтобы отобрать тепло у разогретого реакцией деления реактора (охладить его) и передать его дальше. Первый контур является радиоактивным, но он включает в себя не все оборудование станции, а лишь его часть, преимущественно ядерный реактор.

В активной зоне ядерного реактора находится ядерное топливо и, за редким исключением, так называемый замедлитель. Как правило, в большинстве типов реакторов в качестве топлива применяется уран 235 или плутоний 239.

Для того чтобы можно было использовать ядерное топливо в реакторе, его первоначально помещают в тепловыделяющие элементы – твэлы. Это герметичные трубки из стали или циркониевых сплавов внешним диаметром около сантиметра и длиной от нескольких десятков до сотен сантиметров, которые заполнены таблетками ядерного топлива. При этом в качестве топлива выступает не чистый химический элемент, а его соединение, например оксид урана UO2. Все это происходит еще на предприятии, где ядерное топливо производится.

Для упрощения учета и перемещения ядерного топлива в реакторе твэлы собираются в тепловыделяющие сборки по 150–350 штук. Одновременно в активную зону реактора обычно помещается 200–450 таких сборок. Устанавливают их в рабочих каналах активной зоны реактора.

Именно твэлы – главный конструктивный элемент активной зоны большинства ядерных реакторов. В них происходит деление тяжелых ядер, сопровождающееся выделением тепловой энергии, которая затем передается теплоносителю. Конструкция тепловыделяющего элемента должна обеспечить отвод тепла от топлива к теплоносителю и не допустить попадания в теплоноситель продуктов деления.

В ходе ядерных реакций образуются, как правило, быстрые нейтроны, то есть нейтроны, имеющие высокую кинетическую энергию. Если не уменьшить их скорость, то ядерная реакция со временем может затухнуть. Замедлитель и решает задачу снижения скорости нейтронов. В качестве замедлителя, широко используемого в ядерных реакторах, выступают вода, бериллий или графит. Но наилучшим замедлителем является тяжелая вода (D2O).

Здесь нужно добавить, что по уровню энергии нейтронов реакторы разделяются на два основных класса: тепловые (на тепловых нейтронах) и быстрые (на быстрых нейтронах). Сегодня в мире только два действующих реактора на быстрых нейтронах и оба находятся в России. Они установлены на Белоярской АЭС. Однако использование реакторов на быстрых нейтронах является перспективным, и интерес к этому направлению энергетики сохраняется. Скоро реакторы на быстрых нейтронах могут появиться и в других странах.

Так вот, в реакторах на быстрых нейтронах в замедлителе нет необходимости, они работают по другому принципу. Но и систему охлаждения реактора здесь тоже нужно выстраивать иначе. Вода, применяемая в качестве теплоносителя в тепловых реакторах, – хороший замедлитель, и ее использование в этом качестве в быстрых реакторах невозможно. Здесь могут применяться только легкоплавкие металлы, например ртуть, натрий и свинец. Кроме того, в быстрых реакторах используется и другое топливо – уран-238 и торий-232. Причем уран-238 гораздо чаще встречается в природе, чем его «собрат» уран-235. Строительство атомных электростанций с реакторами на быстрых нейтронах способно значительно расширить топливную базу ядерной энергетики.

Для того чтобы предотвратить попадание нейтронов в окружающую среду, активная зона реактора окружается отражателем. В качестве материала для отражателей часто используют те же вещества, что и в замедлителях. Кроме того, наличие отражателя необходимо для повышения эффективности использования ядерного топлива, так как отражатель возвращает назад в активную зону часть вылетевших из зоны нейтронов.

Парогенератор

Вернемся к процессу преобразования ядерной энергии в электричество. Для производства водяного пара на АЭС применяются парогенераторы. Тепло они получают от реактора, оно приходит с теплоносителем первого контура, а пар нужен для того, чтобы крутить паровые турбины.

Применяются парогенераторы на двух- и трехконтурных АЭС. На одноконтурных их роль играет сам ядерный реактор. Это так называемые кипящие реакторы, в них пар генерируется непосредственно в активной зоне, после чего направляется в турбину. В схеме таких АЭС нет парогенератора. Пример электростанции с такими реакторами – японская АЭС «Фукусима-1».

Вода первого контура, циркулирующая через активную зону реактора, омывает тепловыделяющие элементы, нагреваясь при этом до температуры 320–330° С. Но поскольку вода в обычном состоянии при давлении в 1 атмосферу закипает уже при температуре 100°С, то для того чтобы повысить температуру кипения, повышают и давление в первом контуре теплоносителя. В современных реакторах типа ВВЭР (водо-водяной энергетический реактор – они являются основой мировой атомной энергетики) давление в первом контуре достигает 160 атмосфер.

Дальше эта очень горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. В парогенераторе это тепло передается воде второго контура. Это контур так называемого рабочего тела, т. е. среды, совершающей работу, преобразуя тепловую энергию в механическую. Эта вода, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому она закипает. Образовавшийся водяной пар под высоким давлением поступает на лопатки турбины.

Турбина и генератор

Пар из парогенератора поступает на турбину, в которой энергия пара преобразуется в механическую работу. В паровой турбине потенциальная энергия сжатого и нагретого водяного пара преобразуется в энергию кинетическую, которая, в свою очередь, преобразуется в механическую работу – вращение вала турбины, а он уже вращает ротор электрогенератора. Теперь механическая энергия превратилась в электрическую.

Прошедший через турбину пар поступает в конденсатор. Здесь пар охлаждается, конденсируется и превращается в воду. По второму контуру она поступает в парогенератор, где снова превратится в пар. Конденсатор охлаждается большим количеством воды из внешнего открытого источника, например водохранилища или пруда-охладителя. С водой первого контура, как мы помним, радиоактивного, паровая турбина и конденсатор не взаимодействуют, это облегчает их ремонт и уменьшает количество радиоактивных отходов при закрытии и демонтаже станции.

Управление реактором

Вернемся снова к ядерному реактору. Как же он управляется? Помимо твэлов с топливом и замедлителя в нем находятся еще управляющие стержни. Они предназначены для пуска и остановки реактора, поддержания его критического состояния в любой момент его работы и для перехода с одного уровня мощности на другой. Стержни изготовлены из материала, хорошо поглощающего нейтроны.

Для того чтобы реактор работал на постоянном уровне мощности, необходимо создать и поддерживать в его активной зоне такие условия, чтобы плотность нейтронов была неизменной во времени. Это состояние реактора и принято называть «критическим состоянием», или просто «критичностью».

Когда активная зона сильно разогревается, в нее опускаются управляющие стержни, которые встают между твэлами и вбирают в себя избыточные нейтроны. Если нужно добавить мощности, управляющие стержни снова поднимают. Если же их опустить на всю длину твэлов, то цепная реакция прекратится, реактор будет заглушен.

Кроме того, на случай непредвиденного катастрофического развития цепной реакции, а также возникновения других аварийных режимов, связанных с избыточным энерговыделением в активной зоне реактора, в каждом реакторе предусмотрена возможность экстренного прекращения цепной реакции. В этом случае в центральную часть активной зоны под действием силы тяжести сбрасываются стержни аварийной защиты.

Что еще есть на АЭС?

После удаления из реактора в твэлах с отработанным ядерным топливом все еще продолжаются процессы деления. В течение длительного периода времени они продолжают оставаться мощным источником нейтронов и выделяют тепло. Поэтому в течение некоторого времени твэлы выдерживают под водой в специальных бассейнах, которые находятся тут же, на атомной электростанции. Если их не охлаждать, они просто могут расплавиться.

После того как их радиоактивность и температура снизятся до значений, позволяющих их перевозить, а для водо-водяных реакторов это три года, твэлы извлекают, помещают в толстостенную стальную тару и отправляют в «сухие хранилища».

Кроме того, если посмотреть на атомную электростанцию со стороны, то ее силуэт, как правило, определяют высокие сооружения башенного типа. Это градирни. Они нужны в случае если невозможно использовать воду для конденсации пара из водохранилища. Тогда на станции применяют оборотные системы охлаждения, ключевым элементом которых являются охладительные башни. Внутри градирен горячая вода распыляется, падая с высоты как в обычном душе. Часть воды при этом испаряется, что и обеспечивает требуемое охлаждение. Благодаря своим внушительным размерам, а некоторые из них достигают высоты 60-этажного дома (например, градирня энергоблока №6 Нововоронежской АЭС), градирни обычно являются самой заметной частью атомной электростанции.

Кроме того, каждая атомная станция имеет еще одну или несколько высоких труб, внешне похожих на дымовые трубы обычных тепловых электростанций. Но дым из них не идет – это вентиляционные трубы, через них выводятся газоаэрозольные выбросы – радиоактивные инертные газы, аэрозоли радиоактивных продуктов деления и летучие соединения радиоактивного иода. Но по большей части это радиоактивные изотопы инертных газов – аргон-41, криптон-87 и ксенон-133. Они представляют собой короткоживущие радионуклиды и без ущерба для экологии распадаются за несколько дней или даже часов.

Похожие статьи

Ураган Милтон: природное явление или результат заговора?

В Японии оправдан старейший в мире смертник

Удивительная находка: послание из прошлого на археологических раскопках во Франции